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Abstract. We present model calcnlations for lhe laftice dynamics of berlinite (AIPOd. The 
short-range potentials used for the calculation are based on the ones determined for quam 
(Si&). The polarizability of the oxygen ion is taken into account by an adiabatically moving 
shell. A good description both of the experimental frequencies and the high-frequency dielectric 
conslants is obtained. Estimates of the ionic as well as effective charges of the constitnent ions 
are given. The deduced charges in conjunction with the obtained polarizability indicate a similar 
charge slate of the oxygen ion in quartz and berlinite. The ionic cha rm of phosphorus and 
aluminium differ strongly. The same observation is made for the short-range forces between the 
caliom and oxygen. On the basis of these results the picture of an oxygen framework crystal is 
discarded. Special effort is devoted to the investigation of equilibrium conditions. The stability 
of the respective tetrahedra tnms out Lo be of ceniml impoiiance for the dynamics of both quarlz 
and berlinite. Consequences for the CL- to @-phase transition are discussed. 

1. Introduction 

Besides its potential for technical applications (see Jayaraman et a! 1987, Sidek er al 
1987), which mainly relies on its favourable piezoelectric properties, berlinite (AIPO4) 
is of fundamental interest for understanding the bonding of tetrahedrally coordinated oxides 
in general. This interest has received new impetus due to the memory phenomenon berlinite 
exhibits in connection with order-disorder transitions under pressure (see Kruger eral 1990, 
Chelikowsky et al 1990). 

Starting with the early structural work of Schwarzenbach (1966) one of the central 
questions raised in connection with berlinite is whether it should be regarded as (AIP)04, 
i.e. a framework crystal, or as an ionic structure of the type A13+(P04)3-. While the 
diffuse x-ray scattering intensities support an ionic structure (see Schwarzenbach 1966). it 
is, in particular, the similarities shared by berlinite and quartz (SiOz) which point towards 
a framework crystal. These similarities are not limited to a common structure (see section 
2), but extend as well to the dynamics of the crystals (see Bethke er ai 1992). Even the 
well h o w n  transition from the 01- to the p-phase, observed in quartz, is not only present 
in berlinite, but also takes place at nearly the same temperature (T, RZ 857 K in Alp04 and 
T, c 846 K in SiOz). 

Given these similarities the question of the binding in berlinite can be answered best 
by carrying out a comparative study with quartz. Such a study is made possible by the fact 
that both for berlinite and for quartz sufficient experimental data are available. While the 
determination of the phonon dispersion in quartz has been a subject of continuing research 
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for many years (for an overview see Strauch and Dorner 1993) accurate experimental data 
for the phonon frequencies in berlinite are rather recent (Scott 1971, Camassel et a1 1988, 
Bethke et al 1992). 

To our knowledge, there have been two major attempts to describe the lattice dynamics 
of berlinite (Bethke eta! 1992, Scott 1971). Both of them neglect the polarizability of the 
oxygen ion. Scott (1971) comes to the conclusion that there is a strong charge compensation 
in berlinite (Znl - Zp 4 0.2P”). Bethke et a1 go one step further and interpret their results 
in terms of an oxygen framework crystal. Including the polarizability of the oxygen ion, 
we will give a different picture of the bonding in berlinite and show that this picture is 
compatible with the experimental results. 

We start our investigation by employing lattice-dynamical shell models developed for 
quartz to describe the lattice dynamics of berlinite (for a general description of lattice- 
dynamical models see e.g. Sinha 1973 and references therein). Although desirable, a perfect 
description of the experimental frequencies in berlinite is not the ultimate objective of our 
study. Instead, we want to keep the changes within the models as small as possible while 
at the same time achieving a satisfactory reproduction of the experimental data. This way 
we obtain valuable information on the essential changes in the charge states and bonding 
accompanying the substitution of silicon by aluminum and phosphorus. As in quartz it will 
tun out that, in order to achieve an understanding of the dynamics, it is advantageous to 
include the study of the dielectrical properties of the crystal. 

The paper is structured as follows. In section 2 we give a short description of the 
structure of berlinite followed by a summary of the experimental data in section 3. The 
lattice-dynamical models will be presented in section 4 while section 5 deals in detail with 
charges and polarizabilities. Section 6 is concerned with crystal equilibrium and section 7 
treats the temperature dependence of the phonon spec!”. 

2. Structure 

Berlinite (AIP04) consists of a three-dimensional alternation of slightly deformed A104 
and PO, tetrahedra which are linked at the comers by common oxygen ions (see figure 
1). Like quartz low-temperature berlinite exists in two species known as Dauphin6 twins. 
The left- and right-handed modifications of these species belong, respectively, to the space 
groups P3121 (D!) and P3221 &’). There is a transition at approximately 857 K to 
the high-temperature phase. Unless explicitly stated berlinite in this work denotes the 
low-temperature phase otherwise known as or-berlinite and the same convention applies to 
quartz. 

A detailed description of the structure which is defined by two lattice constants and 
eight structural parameters is given by Schwarzenbach (1966) and Ng and Calvo (1976). In 
this work we will use, unless stakd otherwise, the structural parameters of Schwarzenbach 
(1966). The coordinates of the atoms are given in table 1 for reference. 

The average distance between phosphorus and neighbouring oxygen ions being 1.516 8, 
the PO4 tetrahedrat are appreciably smaller than the AI04 tetrahedra with an average 

t These values are very close to lhe ones found in other materials for the distances within (Pod’- levahedra. 
E.g. r ( P - 0 )  is approximately 1.54 A in fluorapatite (Calo(poa)&) (Boyer and Fleury 1974) and hydroxyapatite 
(Calo(PO&F~) (Posner er al 1958). As the molecular-crystal character of lhese substances is well established 
this observation should be taken into account when discussing lhe character of the binding in W h i t e .  See also 
the paper by Averbuch-Pouchot (1993) and references therein for bond lengths within FQ,H tetrahedra in organic 
phosphites. 
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Figure 1. Schematic view of lhe binding in berlinite 
(taken from Bethke et  a1 1992). Open circles: 
oxygen ions; full circles: phosphorus ions; dotted 
circles: aluminium ions. The AI04 tetrahedra share 
“ n o n  oxygen ions with the PO4 tetrahedra 

Table 1. Cartesian coordinates of the “ic  positions in a-berlinite using the structural 
parameters of Schwarzenbach (1966). Units are A. a,. a2 and a) are the hexagonal Bravais 
vectors. 

No x Y 1 

ai 4.9429 0.OwO 0.ooM) 
a2 -2.4715 4.2807 0.00w 
a3 O.OW0 0.0WO 10.9476 

I (AI) 2.3054 0.0wO 3.6492 
2(Al) -1.1527 1.9965 -3.6492 
3 W )  -1.1527 -1.9965 0.ww 
4 (P) 2.3078 0.OwO -1.8246 
5(P) -1.1540 1.9987 1.8246 
6(P) -1.1540 -1.9987 5.4738 
7 (0) 1.3376 1.2491 4.3593 
8 (0) 0.4130 1.7829 -4.3593 
9 (0) -1.7505 0.5338 -2.9391 

10 (0) -1.7505 -0.5338 -0.7101 
11 (0) 0.4130 -1.7829 0.7101 
12 (0) 1.3376 -1.2491 2.9391 
13 (0) 1.4258 1.0998 -1.2780 
14(0) 0.2395 1.7847 1.2716 
15 (0) -1.6653 0.6849 2.3716 
16 (0) -1.6653 -0.6849 4.9268 
17 (0) 0.2395 -1.7847 -4.9268 
18 (0) 1.4258 -1.0998 -2.3716 

8: AI .P 0 00 

aluminium-oxygen nearest-neighbour distance of 1.739 A. For the following discussion 
it is essential to know that berlinite can be built up fiom quartz by replacing the silicon ions 
altemately by phosphorus and aluminium while simultaneously making small corrections to 
the bond lengths. In order to facilitate the comparison we have listed the atomic distances 
up to - 3 8, for both structures in table 2. 

A very detailed description of the symmetry properties of berlinite including phonon 
representations and their selection rules is given by Bethke et a6 (1992) and will not be 
repeated here. 

3. Experimental data 

The vibrational spectrum of berlinite has been investigated both by optical spectroscopy and 
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Table 2. Nearest-neighbour distances in e-berlinite. The values for oquartz are given for 
“parison. The numbering is consistent with table 1 for berlinite and the anicle by Schober 
er al (1993) for qwrtz. 

No Ion pair rjk (A) NO Ion pair l i k  (A) 
1 Al(lW(7) 1.7324 1 Si(l)-0(4) 1.6079 
2 Al(lLO-O(l5) 1.7455 2 Si(lLOL6) 1.6100 . .  . .  

1.5122 
1.5197 
24565 3 0(4)-0(7) 2.6154 
2.4714 4 0(4)-0(9) 2.6161 
2.4721 5 0(4)-0(5) 26282 
2.4903 6 0(4)-0(6) 2.6444 
2.7976 
2.8343 
2.8737 
2.8995 
3.0843 7 S i ( lp i (2 )  3.0572 
3.0862 

inelastic neutron scattering. Although optical spectroscopy is limited to long wavelengths, 
the frequencies thus obtained are of special importance to the present investigation as they 
cover the whole frequency range of the vibrational spectrum up to 40 THz. The neutron 
data available so far (Bethke et al 1992) are limited to energies below 8 THz. An extensive 
study of the infrared activity of berlinite has been carried out by Camassel et al (1985). An 
analysis of the Raman spectra has been done by Scott (1971). The modes at the zone centre 
belong to three irreducible representations which are denoted rl, r? and r3. The eight 
optical modes of representation rl are Raman active, only, while the nine optical modes of 
representation rz are infrared active, only. Representation 113 is twofold degenerate and its 
2 x 17 optical modes are both Raman and infrared active. A very interesting discussion of 
the changes in optical activity when going from p-quartz to a-quart and then to a-berlinite 
is given by Camassel et ai (1988). In the latter article one also finds a comparison of the 
results obtained by different experimental groups. The agreement is generally quite good. 
There is, however, one strong discrepancy for two frequencies of the r3 representation. 
Scott (1971) claims to observe in his Raman spectra a polar mode at U ~ O  = 13.8 THz 
and ULO = 17.0 THz respectively which according to Camassel et a1 (1988) shows up at 

= 14.2 THz and WLO = 15.7 THz in the infrared reflectivity data. This discrepancy will 
become important in section 5 when we are dealing with the splitting in berlinite. 
The numerical values for the optical frequencies used in this work are summarized in table 3. 

An extensive study of the lower-lying (U e 8 THz) dispersion branches of berlinite by 
inelastic neutron scattering has been carried out by Bethke et al (1992). As we will not 
explicitly adjust, but only compare our models to the neutron data we do not reproduce the 
numerical values for the frequencies but refer the reader to the original publication. The 
neutron data are nevertheless of fundamental importance to our study as they allow us to 
check the predictions of OUT models in the interior of the Brillouin zone. 

As discussed by Bethke et a[ the dispersion relations of berlinite in the r-A direction, 
i.e. along the threefold axis, can be interpreted in terms of a back-folding of the dispersion 
relations found for quartz. This back-folding is due to the doubling of the primitive cell 
along the threefold axis when going from the quartz to the berlinite structure. If we extend 
this observation, which has been made for the lower-frequency spechum, to all vibrations 
then the r-point modes in berlinite contain already the information of the r- plus A-point 
modes in quartz. Fitting the models only to the optical frequencies, therefore, seems to be 
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Table 3. Optical frequencies at he r point for berlhite in terahertz The experimental 
frequencies listed in columns 2 and 3 are taken f" he Raman measurements of Scott (1971) 
for the FI representation and from the infrared reflectivity measurements of Camassel e! a1 
(1988) for the rz and r3 representations. The theoretical predictions of the shell models ~ ( 2 )  
and SM(3) are given in columns 4 and 5 and 6 and 7. respectively. The model parameters can 
be found in table 4. 

W(SM(Z1) TOC(M(z1) LO(SM01) TO(MO11 

6.5 
10.1 

13.7 
21.9 
33.2 
33.5 

- 

r2 1.4 
4.2 
8.2 

13.4 
16.3 
21.1 

34.8 
36.9 

- 

r3 3.4 
3.8 
5.0 
6.2 
8.6 

11.5 
12.4 
15.7 

19.5 
21.7 
22. I 
33.7 
35.4 
36.8 
37.2 

- 

- 

1.4 
4.2 
8.1 

13.2 
14.7 
20.5 

34.8 
32.8 

3.4 
3.8 
5.0 
5.9 
8.5 

11.4 
12.4 
14.2 

19.5 
21.3 
22. I 
33.0 
33.9 
35.4 
36.8 

- 

- 

- 

5.8 
6.5 
9.4 

11.0 
12.4 
20.8 
33.1 
33.9 

1.7 
4.0 
8.6 

13.8 
16.2 
21.3 
22.9 
33.7 
38.6 

2.8 
3.4 
5.4 
6.2 
8.6 

11.0 
11.7 
12.3 
15.5 
17.3 
m.3 
21.5 
23.8 
33.9 
34.0 
38. I 
39.0 

1.7 
4.0 
8.4 

13.7 
14.6 
20.8 
22.6 
32.7 
34.3 

2.8 
3.4 
5.4 
6.2 
8.6 

10.9 
11.7 
12.3 
13.4 
17.3 
19.7 
21.3 
23.5 
33.0 
34.1 
34:7 
38.5 

4.9 
6.4 

10.0 
12.3 
13.6 
20.7 
32.4 
33.7 

1.5 
3.6 
7.2 

13.9 
16.1 
21.5 
22.9 
34.2 
37.9 

3.0 
3.4 
5. I 
6.1 
9.4 

12.1 
12.1 
13.1 
14.5 
17.1 
19.5 
21.0 
22.8 
32.9 
34.3 
37.4 
38.2 

1.5 
3.6 
6.9 

13.8 
15.5 
21.3 
22.9 
33.5 
34.8 

3.0 
3.2 
5. I 
6.1 
9.3 

12.0 
12.1 
13.1 
13.9 
17.0 
19.4 
20.7 
22.8 
32.8 
33.9 
34.8 
37.7 ~~ ~~~ 

an adequate choice. 

4. Model calculations 

To ow knowledge, all theoretical approaches dealing with the lattice dynamics of berlinite 
so far have been based on phenomenological models of the Born-von Mm6n or rigid-ion 
type (Bethke et al 1992, Scott 1971). Due to the very effective screening of the long-range 
forces this procedure seems legitimate as long as one concent" on the low-frequency 
part of the spectrum. The description of the experimental frequencies achieved by Bethke 
ef a[ (1992) using a simple fiveparameter Bom-von K h 6 n  model is impressive. 
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In the case of a-quartz (SiOz) (Schober et al 1993) we had found that, although the 
lower part of the dispersion branches may be described very well by simple short-range 
models (see Barron er a1 1976). the polarizability of the oxygen ion has to be taken into 
consideration in order to achieve an overall understanding of the lattice dynamics of the 
crystal. As quartz (SO>) and berlinite (AIPO4), both structurally and chemically, are very 
similar it is to be expected that this also holds for the latter. 

We start our investigations with the shell model SM(1) which has given very satisfactory 
results for quartz Model SM(1) is a shell model with short-range interactions specified 
among oxygen shells as well as between oxygen shells and silicon corest. The short-range 
interactions are in both cases derived from Bom-Mayer potentials (see equation (1)) thus 
limiting the number of free parameters. 

V ( T )  = Voexp ( - r / a )  . (1) 

It tums out that in order to achieve a gwd  description of the acoustic branches in quartz 
one has to add small valence forces which we choose to be of the Keating type (1966): 

Here, ~ i i ,  is the vector pointing from particle i to particle i', and the superscript 0 denotes 
the equilibrium positions. The Keating forces are necessay both for the inter-tetrahedral 
(Si-C-Si) as well as the intra-tetrahedral angles ( M i a ) .  

The charge of the oxygen ion is not a free parameter in model SM(1) but fixed at the 
nominal value of -2e. The parameter values of the model are given in tahle 4. For a more 
detailed description of the model see the article by Schober et a6 (1993). 

Model SM(1) can be applied straightforwardly to berlinite. The only additional parameter 
necessary is the one determining the distribution of the positive charge - which in quartz 
is concentrated on the silicon ions - among the phosphorus and aluminium cations. In a 
first, simplified approach we choose the ionic charges to have the nominal values of the 
respective valences, i.e. 3e for the aluminium and 5e for the phosphorus ion. As we have a 
priori no reason to believe that the inter-tetrahedral valence forces in quartz are the same as 
the ones in berlinite we include at this early stage neither Keating potentials for the AI-QP 
angles nor a direct AI-P interaction. As we still expect strong infra-tetrahedral forces to 
arise from the sp3 hybridization of the phosphorus orbitals, however, we keep the Keating 
potentials-obtained for the Mi4 angles in quartz-for the 0-P-0 angles in berlinite. 
If we compare the frequencies for the zone centre modes calculated by such a model with 
the experimental values we realize that, although the crystal is stable, the agreement is not 
very good. It turns out that in order to improve the description of the experimental data it is 
sufficient to reduce the amplitude of the P-0 potential slightly (about 10%) while retaining 
the value of the S i 4  potential for the A 1 4  potential. In addition, we have to adjust one 
of the Keating parameters to the experimental data (see table 3). The r-point frequencies 
calculated with this model-which we call SM(2)--are listed in table 3. The parameter 
values are given in table 4. Considering the fact that out of the 10 free parameters of 
the model only two have been adjusted to the data, while the rest have been transferred 

t For numerical w o n s  we have chosen a small polmizability (a = 0.03 A ) and large shell charge (Y = -Be) 
for the cations, Thus. although the interactions are auuaUy specified between cation and oxygen shells, they 
effectively act between eation cores and oxygen shells. 

3 
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lsble 4. Parameters of the shell models sM(I) and SM(4) for quartz and SM(2) and SM(3) for 
terlinite. The interactions are numbered according to table 2. 2 is the ionic charge, Y the shell 
charg6 and OL the free-oxygen polarizability. L and T denote longitudinal and transverse force 
constants. V and a are the amplitude and decay canstd of the Bom-Mayer potentials. see 
equation (I). p and p' are the Keating parameters, see equation (2). The subsnipts inter and inm 
stand for UE inter-tetrahedral and intm-tetnhedral angles, respectively. In the case of berlinite 
the inha-tetrahedral interactions are confined b the G P 4  angles. All Keating interauions aet 
between mres only. The values in parenthesis apply to model sM(4) with direcl silicon-silicon 
interactions. Parameters marked by an asterisk have been kept fixed. For models sM(2) and 
s ~ ( 3 )  AV is the mean square deviation of the calculated frequencies from the experimental 
frequencies in hble 3. In the case of models SM(I) and SM(4) AV is defined as in the h c l e  by 
Schober e t d  (1993). n,, is the number of free model parameters. 

1.2 7800 
1,2 0.2089 

3-6 240 
3-6 0.430 
7 -128 
7 -12 

-2" 

-3.13 
1.86 

5.2 
I .O 
15 
2.2 

12 
0.31 

7275 
0.2039 

(-80) 
(2) 

- 1.68 

-3.03 
1.73 

1.6 (5.1) 
4.2 &j 
3.3 (3.3) 
2.0 (2.4) 

9 
0.66 

1 2  7800 
1.2 0.2089 
3.4 7320 
3.4 0.2089 
7-12 240 
7-12 0.430 

-2.00' 
5.00' 
-3.13 
1.86 

1.5 
6.5 

10 
0.70 

7275 
0.2039 
7275 
0.2039 

- 1.68 
4.51 
-3.03 
1.73 

16.8 
1.3 
6.7 
1.5 

10 
0.55 

eV 

eV 
A 
A 
eV 

N m-' 
N m-' 

A 

e 
c 
e 
A3 

N m-' 

N m-' 

THz 

unchanged liom model SM(I) of quartz, the agreement with experiment is very good (see 
table 3). This good agreement is the more surprising as both the Coulomb interactions 
and the short-range force constants have changed dramatically when going from quartz to 
berlinite. The change in the Coulomb interactions is due to the unequal distribution of the 
positive charge among the cations of berlinite while the differences in the bond lengths 
(see table 2) are responsible for the changes in the short-range force constants. As we 
want to emphasize this point we have listed in table 5 the force constants derived from the 
Coulomb as well as Born-Mayer potentials for the anionxation interactions of both quartz 
and berlinite. 

and transverse 
(&) force constants between the cation cores and the oxygen shells by summing the 
Coulomb and short-range contributions: 

In this context it is interesting to calculate the effective longitudinal 

The subscripts long and short in equation (3) indicate that we are averaging over the long 
and short bonds within a tetrahedron, respectively. The numerical values for these effective 
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Tnble 5. Intra-tehahedral force constants for quartz and berlinite. Lc and Tc stand for the 
longitudinal and transverse force constants calculated from the Coulomb potential using the 
ionic charges listed in table 4. L, and T, denote the short-range force constants derived from 
the Born-Mayer potentials of table 4. The units are N m-]. The numbering of ule atoms refers 
to table 1 of this paper in the case of berlinite and IO table 1 of Schober el 01 (1993) in the case 
of quartz 

Interaction Bond length (A) Model Lc Tc L,, Tu 
Si(lto(4) 1.6072 SM(1) -889 445 1305 -170 
Si(lW(6) 1.6100 SM(1) -885 442 1239 -168 
P(4)4(13) 1.5122 SM(2) -1334 667 1936 -268 
P(4)-0(9) 1.5197 SM(2) -1315 657 1867 -257 
Al(IW(7) 1.7324 SM(Z) -532 266 719 -87 
Al(lW(15) 1.7455 SM(2) -521 2M) 675 -81 

force constants are listed in table 6 for quartz (model SM(1)) and berlinite (model SM(2)). 
By comparing columns 2 4  of table 6 we realize that the bond strengths, as given by our 
latticedynamical models, differ strongly for Si-O, P-O and AI-O. If we average, however, 
the A 1 4  and P-O effective force constants they are nearly exactly as large as the ones 
for Si-O. The observation that the averaged effective force constants in berlinite are nearly 
identical to the effective force constants in quartz is in agreement with the results of earlier 
lattice-dynamical studies. Bethke et al (1992), with their simple short-range model, obtain 
close-lying values for the AI-O and P-O force constants on one hand and the Si-O force 
constants on the other hand. Given the resemblance of the dispersion curves such a similarity 
of the average cation-oxygen bond strength would be expected, especially in the light of the 
small mass differences of quartz and berlinite. It is, however, not a sufficient explanation 
for the fact that the strong differences in the AI-O and P-O force constants, as given by 
our models, do not show up in the optical frequencies. 

As the interactions in our models are specified between oxygen shells and cation cores 
a direct comparison with equivalent interactions in rigid-ion models is generally excludedt. 
In the case of quartz we observe, however, that despite the rather large polarizability of 
the oxygen ion the longitudinal effective Si-O force constant of model SM(1) (385 N m-I) 
differs only slightly from the values obtained for rigid-ion models (- 400 N m-l, see 
Barron ef a1 (1976)). As the polarizability of the oxygen ion is unchanged, we may use 
this observation to perform a crude comparison of the shell models for berlinite with results 
obtained for other crystals containing PO4 groups based on rigid-ion models. In this context, 
systems where the (P04)3- molecule is only weakly influenced by the crystal environment 
are of special interest. Using a rigid-ion approach the longitudinal P-O force constants for 
these crystals can be evaluated more or less directly from the measured frequencies of the 
molecular vibrations (see Herzberg 1945). One obtains values of approximately 600 N m-' 
(Boyer and Fleury 1974) or 540 N m-' (Herzberg 1945). These values are considerably 
higher than the value of the longitudinal P-O force constant (450 N m-') as given by 
Bethke ef al (1992) for their rigid-ion model. But they are nearly identical to the value of 
the effective P-O force constant as given by model SM(2) (577 N m-l). To exclude as much 
as possible the influence of the oxygen polarizability on our conclusions let us compare the 
ratio 

t By inspenion of table 6 we observe e,g. that for ule shell models the strength of the transverse effective force 
constants of the don-oxygen interaction is of the same order of magnitude as the one of the longitudinal effective 
force constants, while in the case of rigid-ion models (see Bel& et 01 1992) the m v e r s e  force constants are 
about ten times weaker than the corresponding longitudinal force constants. As we will explain in section 6. these 
strong differences can be under" on the basis of the equilibrium conditions. 
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obtained with the shell model force constants with the ratio 

obtained with rigid-ion model force constants. If berlinite were a molecular crystal the 
ratio (3a) should be larger than unity, while (3b) should be equal to unity. In the case 
of an oxygen framework crystal just the opposite relations should hold. So, while the 
results of Bethke eta1 (1992) constitute strong evidence for the absence of units 
in berliite-the binding of phosphorus to the oxygen ions is weaker than in the molecule, 
our models support the picture of a (m4)’-AI3+ crystal. 

Table 6. Effective force constants as defined in equation (3) for model SM(I) (quartz) and SM(Z) 
(berlinite). By average we denote lhe effective force constants in berlinite. which we obtain by 
averaging over the P-O and AI-O bonds. The units are N rn-’. 

S i 4  P-O A I 4  Average(AIPO4) 

Lre 385 577 171 374 
7& 275 400 179 290 

From the above discussion it becomes evident that special care must be taken when 
interpreting the results obtained by latticedynamical models, in particular if only a 
limited aspect of the vibrational spectrum is taken into consideration. Using different 
phenomenological models and concentrating on different parts of the vibrational spectrum 
two completely different pictures for the bonding in berlinite emerge. Whereas the results 
of Bethke et al (1992) suggest an oxygen framework structure our investigations lead to 
strongly bonded PO4 units connected by aluminium ions. In the light of the dispersion 
relations alone both pictures are equally valid. By investigating the dielecttical properties 
as well as the equilibrium conditions in the following sections of this paper we will try to 
give further arguments in favour of our interpretation. 

Before doing so, we present a second shell model for berlinite. By inspection of table 3 
we find that the largest differences between the experimental data and the predictions of 
model SM(2) arise for the highest frequencies. A better agreement can be achieved if we 
take the ionic charges as free parameters. The values obtained for the ionic charges after 
adjustment of all model parameters to the experimental data are smaller than the valence 
charges of -2e and 5.2 for the oxygen and phosphorus ions, respectively. As we will show 
in section 5 this lowering of the ionic charges with respect to quartz is also required by 
the observed L S T O  splitting. It turns out that the quality of the fit is hardly changed if 
we retain the same potential for the A I 4  and P-0 bonds. In contrast to model SM(2), 
however, both the amplitude VO and the decay constant a (see equation (1)) differ from 
the parameters obtained for quartz. In addition, there is no need for a short-range potential 
between oxygen cores if we specify Keating potentials within the P o 4  tetrahedra as well as 
for the inter-tetrahedral angles. Together with the ionic charges the thus-constructed model, 
which we call SM(3). has the same number of free parameters as model S M ( ~ ) .  However, 
all 10 parameters of model SM(3) are adjusted to the experimental frequencies of berlinite 
and not taken over from a similar model for quartz. The final parameter values after the 
adjustment are shown in table 4 and the calculated r-point frequencies in table 3 .  Although 
the agreement with the experimental data could be improved slightly with respect to model 
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S M ( ~ ) ,  the outstanding quality of model SM(3) resides in the fact that the dynamics of 
berlinite is described in terms of valence forces, while a direct oxygen-oxygen potential is 
included in model SM(2). It is, therefore, easier to discuss the bonding in berlinite on the 
basis of model SM(3) instead of model SM(2). 

The intra-tetrahedral valence forces are only significant for the PO4 groups while for the 
A104 groups an inclusion of this type of interaction does not result in a better model. This 
observation is consistent with the x-ray results of Schwarzenbach (1966) which show that 
the P-0 bond is more covalent than the A1-0 bond. An important point in connection with 
Keating potentials is the value of the parameter p' (see equation (2)). In a crystal described 
by Keating potentials only, equilibrium can be ensured by requiring that p' is identical to 
one for all interactions. This is a consequence of the rotational invariance of the potential. 
If we interpret the parameter p' in such a sense that the angle for which the potential is 
in equilibrium may differ slightly from the angle found for the actual crystal structure then 
values for p' very much different from one are not permitted. The values of 1.3 and 1.5 for 
the inter- and intra-tetrahedral Keating parameters p', respectively, are, therefore, a positive 
indication for the physical correctness of the potentials. 

As already mentioned above, no model equivalent to SM(3) has been investigated for 
quartz. In order to answer the question of whether the direct oxygen-xygen interactions 
present in  the quartz models are indispensable for the description of its lattice dynamics 
we applied model SM(3) to the quartz s'uucture. Without any adjustment of the parameters 
model SM(3) reproduces the dispersion curves of quartz rather poorly. As our main interest 
in applying model SM(3) to quartz concerns the changes in bonding we did refrain from 
adjusting all parameters of the model. Indeed it turns out that a very satisfactory description 
of the experimental data can already be achieved by fitting the Keatiug parameters only. 
The values obtained for this quartz model, which will be denoted SM(4), are given in table 4. 
The calculated dispersion curves for the r-A direction, together with the experimental data 
of Strauch and Dorner (1993). are shown in figure 2. 

Although there are some discrepancies for the higher branches the overall description 
of the dispersion curves is good and the same can be said for the r-M direction. 

The changes of the Keating parameters taking place when going from berlinite to quartz 
are particularly strong for the inter-tetrahedral angles (see table 4). This indicates that the 
mechanism responsible for the connection of the Si04 tetrahedra in quartz via the oxygen 
ions differs both in ~haracter-p&~(AlP04) = 1.3; @:,,(SiOz) = 4.2-d in strength- 
ph,,(AIPO4) = 16.8 N m-l; pi.,(SiOz) = 1.6 N m-'-from the mechanism connecting 
PO4 to A104 tetrahedra in berlinite. This interpretation is consistent with the observation that 
the quality of model SM(4) can be improved by including a direct siliconailicon interaction 
(the numerical values are given in parenthesis in table 4). An equivalent interaction between 
aluminium and phosphorus ions in model SM(3) for berlinite proved, in contrast, inefficient, 
As can be Seen in table 4, a direct silicon-silicon interaction implies considerable changes 
in the Keating parameters for the inter-tetrahedral angles-pi,&iOz) = 5.1 N m-'; 
@{,,,(SiOZ) = 2.5, to be compared with the abovementioned values-hinting at a strong 
correlation of the two interactions. It should be pointed out that the inter-tetrahedral Keating 
potentials for model SM(4) with direct silicon-silicon interactions are closer to the ones of 
model SM(3). In particular, the value of the p' parameter is more physical. In conclusion, it 
seems that while the inter-tetrahedral bonding in berlinite can be well described by Keating 
potentials, this is only partly true in the case of quartz. 

Compared to the inter-tetrahedral interactions the intra-tetrahedral interactions change 
mainly in strength when going from berlinite to quartz-&,(AIFQ) = 6.7 N m-'; 
pi.&iOz) = 3.3 N m-'-and less in character-&,(AlPO,) = 1.5; &,(SiOz) = 2.0. 

H Schober and B Domer 
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Figure 2. Dispersion curves of aquartz 01 20 K for 
the r-A direction. Symbols: experimenlal frequencies 
(Stmuch and Domer 1993): lines: theoretical results 
from shell model SM(4). An extended-zone scheme iS 
used to plot the dispersion curves for the lhree different 
irreducible represeniations separately. 

Although this result has to be interpreted with care, as we cannot be sure that the Keating 
potentials describe the covalent bonding in tetrahedrally coordinated oxides perfectly, it 
clearly indicates the strong covalent character of the 0-P-O bond. 

5. Charges and polarizabilities 

As has been discussed extensively by Schober and Strauch (1993) the study of the LGTO 
splitting is a practical tool to predict charges and polarizabilities in crystals like quartz. The 
central quantity of interest in this context is Q2, as defined through equation (4), which is 
a measure of the optical splitting. 

where wLo and oT0 denote the longitudinal and transverse frequencies, respectively. The 
values of Q2 for quartz and berlinite, as calculated by using the experimental frequencies, 
are given in table 7. 

As can be seen, the value of C2 depends on the set of experimental data used for its 
calculation. Comparing the values of S2 obtained using the experimental frequencies of 
Camassel ef al (1988) we observe no variations with the respective phonon representations, 
i.e. the direction of q. This is to be expected given the values for quartz and the small 
anisotropy of the high-frequency dielectric tensor in berlinite (see table 8). We will come 
back to the latter point further on in the discussion. The observed isotropy of '2 as a function 
of q, therefore, speaks in favour of the data of Camassel et al. A similar test for the Raman 
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Table 7. Values of vn = n/2n as defined by quation (4) in units of THz. "e experimental 
values were obtained with the frequencies given by Camassel eta1 (1988) and by Scott (1971) 
( m k e d  by an asteisk) for berlinite and of Elmmte (1967) for quam. In column one we give 
the respective phonon representations. 

u q m  u-berlinite 

Represen~on Experiment SM(I) Experiment w(2) SM(3) 

vn(r2) 20.4 19.7 - 19.2 21.7 17.5 
vn(r3) 20.4 19.7 20.5' 19.3 21.2 17.4 
4 ( r z  + 213)) 20.4 19.7 - 19.3 21.5 17.5 

Table 8. High-frequency dielechic " a n t s  Experimental values &en from Cervais and 
Piriou (1975) (infrared specvoxopy) md Bond (1969 (reRcniviry mmurements: A = 1.6 wm) 
for quam md berimire, respecuvely. 6: and 6; xe the two independent elements of the 
dielectric tenwr 

uqualtz o-berlinite 

Experiment SM(I) Experiment ~ ( 2 )  ~ ( 3 )  

f: 2.36 236 2.28 2.38 2.28 
c; 2.38 2.37 2.30 2.41 2.30 

frequencies of Scott is not possible as the modes of the r2 representation are not Raman 
active. 

Before comparing the calculated with the experimental values we want to express S2 in 
terms of effective charges and the high-frequency dielectric constants. 

Let us define the effective charge tensor in the usual way through 

W'MU = DE% - e(ZeN)+Emar 

where Dm is a regular matrix for IqI -+ 0 and Emac is the macroscopic electromagnetic 
field associated with the respective lattice vibration. M is the mass tensor. 

It has been shown (see Schober and Strauch (1993)) that for a general system with 
diagonal dielectric tensor S2 can be expressed as 

K and K' designate the ions in the primitive cell and U is the cell volume. In order to avoid 
confusion with the notation we want to stress that while the effective charge tensor Zeff is 
a (3r x 3r)  matrix Zeff (~)  denotes a (3 x 3) matrix specific to the ion of type K. 

In the case of rigid-ion models the effective charge tensor is necessarily diagonal and we 
may replace xav(Z::(~)) '  by ~(Z"(K))' ,  where Z@(K)  is an arbitrary diagonal element 
of the (3 x 3) tensor Z;:(K). By defining, in analogy, 
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we write equation (6) in the form 

for an arbitrary crystal. Please note that the sign of the scalar effective charges Z&(K) as 
defined through equation (7) is given by the sign of the ionic charges. In general the scalar 
effective charges do not fulfil a sum rule, although the corresponding charge tensors Z&(K) 
do: 

z $ ( K )  = 0. 
x 

Only in the case of rigid-ion models, for which the effective charges Zef f (~ )  are identical 
to the ionic charges Z,, do they add up to zero as a consequence of the charge neutrality 
of the crystal. The violation of the sum rule for @ ( K ) ,  i.e. the non-zero value of 

A(Z&): = Z&(K) 
x 

is due to the off-diagonal elements of Z&(K). 
Table 9. Effective charges as defined by equations (7) and (IO) in mi$ of e. 

aq- a-berlinite 

Model SM(I) Model SM(2) Model ~ ( 3 )  

Z;r -1.82 -2.06 -1.63 

- 3.05 1.89 
- 4.01 3.52 

Z;y 3.25 - - 
2 2  
Z;e 

A(ZCA) -0.39 -1.18 -1.11 

Besides the effective charges it is the high-frequency constant tm which determines the 
optical splitting (see equation (10)). Schober and Strauch (1993) argued that tm should 
scale linearly with the effective polarizability 

4K 
tm = 1 + -rPa& 

U 

which has been defined as follows: 

a& = (a-1 + Q)-l (12) 

where (Y is the polarizability of the hypothetical free ion and + is a function of the self- 
terms of the polarizable ions (see Schober and Sirauch 1993). Although equation (11) has 
been deduced rigorously only for binary crystals, it can safely be applied to berlinite, as 
like quartz berlinite features only one type of polarizable iont. As Q is a function of the 
self-terms it is only sensitive to average changes in the force constants, acting upon the 

t We assume that the two types of oxygen ion present in berlinite are, from a chemical point of view, identical. 
in particular, that they have the same charges and polarizabilities. 
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polarizable ions. In section 4 we have found that these average changes are very small 
when going from quartz to berlinite. Therefore, aes. and in consequence P, should be 
very similar for both substances. This is actually confirmed both by experiment and by 
our numerical calculations. While the theoretical values for em are somewhat too large for 
model SM(2) the agreement is excellent for model SM(3) (see table 8). Both the theoretical 
and the experimental values show that the dielectric tensor is nearly isotropic. This is a 
necessary condition for the validity of equation (11). 

The investigation of the dielectric constants, therefore, indicates that the polarizability 
of the hypothetically fiee oxygen ion should be about 1.8 A 3  as in quartzt. We can interpret 
this similarity of the polarizabilities microscopically by expressing a e ~  in terms of matrix 
elements between occupied orbitals $; and unoccupied orbitals $j (see Pantelides 1975, 
Pantelides and Harrison 1976) 

H Schober and B Domer 

Ei and Ej are the respective energies of the orbitals. If the electronic distribution around 
the oxygen ion is similar in quartz and berlinite both for the conduction and valence bands 
then aef is not expected to change strongly as the main transitions between valence and 
conduction bands are localized at the oxygen ion (see Binggeli et a1 1991, Chelikowski et 
al 1990). Turning the argument around, we may take the nearly identical values of aeff in 
quartz and berlinite as an indication for similar charge states of the oxygen ion. 

As already mentioned above, no sum rule holds for the effective charges. Therefore, we 
cannot determine the effective charges directly from the experimental values of 52 and bm 
using equation (8). In the case of binary crystals like quartz the problem can be circumvented 
by expressing S2 analytically as a function of the ionic instead of the effective charges (see 
Schober and Strauch 1993). This procedure does not, however, work for temary compounds 
like berlinite due to the possibility of distributing the positive charges unequally among the 
cations. We, therefore, can only place upper and lower limits, albeit rather precise, on the 
charges. Let us start with an oxygen charge of -2e. This fixes at the same time all the 
other charges and we are left with model SM(2). Model SM(2) overestimates the splitting 
of the optical modes. The ionic charge of the oxygen must therefore be smaller than -2e. 
which also means smaller than the value we have deduced for ry-quartz. Model SM(3) with 
an oxygen charge of -1.68e underestimates the splitting. Although we cannot exclude the 
possibility that the LGTO splitting might be increased by appropriately changing the cation 
charges only, thus allowing for a still smaller oxygen charge, such a further reduction of 20 
would imply a simultaneous decrease of the polarizability a. The latter is excluded on the 
basis of em. Our considerations, therefore, converge towards a shell model with an ionic 
oxygen charge around -1.8~. As can hardly exceed 3e charge neutrality together with 
& = -1.8e implies Zp > 4.2e, i.e. a rather unequal distribution of the positive charges 
among the cations. 

In contrast to what was thought earlier (Scott 1971), this picture of a strongly ionic 
crystal is, as our calculations show, perfectly compatible with the experimental data. 
Based on the assumption that the effective charge of the oxygen ion in berlinite does 
not differ strongly from the one in quartz ScoU concluded from the optical splitting 
through equations (8) and (9) that the difference in the effective charges of aluminium and 

t To reach this mndusion through equation (I 1) we must assume that ule value of 0 is only weakly model 
dependent. as this is the m e  for quam 
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phosphorus must be rather small (2," - 25 6 0.2c-e = 0.45e). Although the assumption 
of a similar effective charge for the oxygen ion in quartz and berlinite is confirmed by 
our calculations (see table 9) the proposed limit for Gff - Ziy is at variance with our 
results. The reason for the failure of Scott's simple approach is, to our opinion, rooted 
in the contributions of the short-range interactions to the effective chargest. Due to the 
anisotropy of the charge tensor Zeff the sum rule (equation (9)) is not applicable to the 
scalar effective charges defined through equation (7). thus invalidating one essential step 
in Scott's arguments. To demonstrate the violation of the sum rule we have included the 
quantity A(@), as defined through equation (lo), in table 9. 

6. Equilibrium conditions 

As all the models for berlinite are based on potentials (Coulomb, Bom-Mayer, Keating) 
only, the forces acting upon the ions can be calculated directly using the first derivatives of 
these potentials. As in the case of quartz (Schober et al 1993) it turns out to be impossible 
to satisfy simultaneously all 10 equilibrium conditions, comesponding to the 10 structural 
parameters in berlinite, with the limited number of parameters we use to describe the 
dynamics. The deviations become the more important the higher the charges. 

As the oxygen ion is highly polarizable in all our models, the non-vanishing electrostatic 
field at the oxygen sites must inevitably lead to static dipole moments, which have to be 
included in the equilibrium conditions. In principle the static dipoles can be simulated in 
the framework of shell models by placing the shells off-centre from the cores (see e.g. Dove 
1989). As the short-range forces mainly act upon the shells, the inclusion of static dipoles 
through off-centre positions for the shell changes the short-range part of the equilibrium 
conditions themselves, thus requiring a self-consistent calculation. The large number of 
extra parameters introduced into the models (six for the two types of oxygen in berlinite) 
together with the uncertainties in the short-range potentials themselves do not. in our opinion, 
warrant such a rather involved procedure. 

Instead, we follow a different route. The fact that both NO4 and PO4 tetrahedra can 
be found in a large number of crystals suggests that these tetrahedra are more or less stable 
in themselves independent of the crystalline environment. If this is the case we may build 
up an idealized AJPO4 structure by assembling regular Pot- tetrahedra and AIZ+ ions, or, 
alternatively, AlOf- tetrahedra and Pz+ ions. For non-zero charges 2 such a crystal is not 
in equilibrium due to the electrostatic forces acting among the building blocks. Equilibrium 
can, however, be achieved in two ways: first by allowing for appropriate relaxation through 
distortions of the tetrahedra0 and second by compensating electrostatic forces through static 
dipole moments. 

In order to check the validity of such an approach we must first investigate the underlying 
assumption, i.e. the equilibrium of the isolated tetrahedra. Taking into consideration the 
interactions of the she11 models described in section 4 and assuming that the shells are 
clamped at the core positions. equilibrium for these isolated tetrahedra is achieved if 

A - ( B  + C) = 0 

t By inspection of table 9, we obseme that the influence of the short-range forces on the effective charges is rather 
limited in the case of the oxygen ion, in particular for the models of berlinite. ?he same statement holds for the 
aluminium ions. Large differences with respect to the ionic charges occur. however, for the phosphorus and silicon 
ions. 
$ Such distortions also have to meet geometiid constraints. Regular tetrahedra are incompatible with the quartz 
sh-uctm unless they a~ of specific size. This size is a function of the two latlice wnstans a and c (see Smith 
1963) 
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with 
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B(l -B’ )  c = -- 1 8 3  - 5 
B = -q 

7 d 3 - 3  

A is the contribution from the cation-oxygen (subscript: K-0) and oxygen-oxygen 
(subscript: 0-0) Born-Mayer potentials (equation (I)), B the contribution from the intra- 
tetrahedral Keating potentials (equation (2)) and C the Coulomb part. Please note that, in 
general, the charge of the cation ZK is not fixed by the oxygen charge ZO in shuctures 
consisting, like berlinite, of several non-equivalent tetrahedra. Equation (14) contains only 
one length scale given by the cation-anion nearest-neighbour distance r .  This is due to the 
fact that it was set up for regular tetrahedra, only. Equation (14) may therefore be applied 
to any member of the quartz-family but also to zeolite and any other substance containing 
A04 tetrahedra 

There are two geometrical factors q and 5 entering equation (14). The factor 5 is 
given by the ratio of the cation-anion over the anion-anion distance which, for a regular 
tetrahedron, is equal to { = 4f&. The factor q arises from the projection of the forces 
acting upon the anions onto the cation-anion direction and, for a regular tetrahedron, is 
identical to four. Normally, at least for small distortions, these values for and 5 can also 
be applied to distorted tetrahedra. This holds in particular if, as in the case of quartz and 
berlinite, the tetrahedra possess a twofold axis of symmetry. 

Given a specific lattice-dynamical model we may use equation (14) to determine the 
cation-anion distances for which the tetrahedra of the crystal are in equilibrium. For the 
quartz models SM(1) and SM(4) we find r(Si-0) = 1.59 8, and 1.61 A, respectively. 
This is in excellent agreement with the experimental value of 1.61 A for the average 
silicon-oxygen distance (see table 2), in particular as we necessarily introduce a slight 
error into the calculation by considering clamped shells, only. In silicate minerals the 
oxygen shell position deviates from the core position by typically 0.01 - 0.02 8, for non- 
clamped shells (see Dove 1989). The equilibrium distances for the berlinite model SM(2) are 
r(P-O) = 1.51 A and r(Al-O) = 1.73 A, while for model SM(3) we find r(P-0) = 1.46 A 
and r(Al-O) = 1.77 A. These values have to be compared with the experimental values 
of r(P-0) = 1.52 A and r(Al-O) = 1.74 A. For model SM(2) we observe as in the case 
of quartz very good agreement between theory and experiment. Only in the case of model 
SM(3) are larger discrepancies observed for the P-0 distances. In our opinion the difficulty 
of model SM(3) to predict the equilibrium P-0 distance correctly through equation (14) 
has its origin in  the fact that we force the model to describe both the P-O and the Al- 
0 interactions by identical short-range potentials. The fulfilment of equation (14) by the 
potentials of model SM(3) for quartz tetrahedra is, on the other hand, a good precondition 
for the transferability of these potentials from one substance to the other. 

The contributions of the Keating potentials are very important for the correct prediction 
of equilibrium distances through equation (14). Without these contributions the errors would 
be larger by as much as 0.05 A. This is only possible as the Keating parameter B’ deviates 
from its ideal value of unity. As outlined in the previous section, Keating potentials in 
their pure form, i.e with ,9’ = 1, do not contribute to the equilibrium conditions as they are 
rotationally invariant (see Boyer 1974, Keating 1966). 

Condition (14) places severe constraints on the model potentials. Given the Coulomb 
charges both parameters of the short-range Born-Mayer potential are determined in a simple 
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model like SM(3). As the fulfilment of the equilibrium condition has at no stage been part of 
the fitting process, the fact that this condition is so well satisfied by our models constitutes 
a strong argument in favour of the physical reality of the potentials used. 

We may summarize this section as follows. The interionic potentials which have been 
designed to describe the dynamics of quartz and berlinite automatically predict the correct 
size for the constituent tetrahedral units through equation (14). This result justifies the 
picture of crystals which can be thought of as being built up from isolated molecules. The 
additional forces arising from assembling the charged units are absorbed by an appropriate 
relaxation of the crystal structure. In principle, the relaxation is a complex process in the 
course of which the interionic potentials themselves readjust. It is, therefore, by no means 
evident that the potentials in the crystal should be the same as the ones within isolated 
tetrahedra. In particular, they may predict equilibrium bond lengths for these tetrahedra 
different from the ones in the crystal. However, due to the strength of the intra-tetrahedral 
bonding in these crystals even displacements of the ions which are small compared to the 
range of the potentials are sufficient to compensate large static forces. It is, therefore, to be 
expected that the influence of the relaxation process on the potentials is limited explaining 
the good fulfillment of equation (14). The situation changes if the compensation of the 
static forces can only be achieved through a reorientation of the tetrahedra with respect to 
each other. In this case large atomic movements are possible which dynamically may find 
their expression in soft-going modes and finally in a phase transition. 

If the potentials we have found are the actual physical potentials and if the above picture 
is correct then these potentials should in principle also predict equilibrium for the crysral 
after relaxation. This is. however, as mentioned at the beginning of this section, not the 
case. Although the size of the tetrahedra comes out right, the overall crystal structure, which 
is mainly determined by the inter-tetrahedral angles, is not predictable by our model. One 
explanation for this failure is certainly to be found in the necessary appearance of static 
dipole moments. On the other hand we surely do not describe every detail of the interionic 
bonding by our simplified models. In particular, the forces arising from the low-lying 
electronic bands and responsible for the strong covalent bonding but with limited influence 
on the dynamics are probably ill described by ow potentials. 

7. Temperature dependences 

As outlined in section 2 both quartz and berlhite show a phase transition to a higher- 
symmetry modification. With TO = 846 K for Si02 and TO = 857 K for AlP04, these 
transitions take place at nearly the same temperature. One should, therefore, expect a 
common mechanism to be responsible for these transitions. Given the similarities in the 
crystal stlllctures, the fact that the dynamics can be described by common potentials supports 
this point of view. 

If we interpret our model potentials as the real interatomic potentials then we can in 
principle calculate anharmonic corrections by using a mean-field theory. These mean-field 
calculations must imperatively be done self-consistently. A non-self-consistent calculation 
leads to the well known result that near the critical temperature the squared frequency 
of the soft mode is a linear function of T - To and that the slope of this function for 
T < TO is -2 times the slope for T > TO. A comparison of the soft-mode frequencies 
above and below the phase mansition reveals that this requirement is incompatible with the 
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experimental findingst. Self-consistent mean-field theory for a complicated structure like 
quartz is very tedious and its success is by no means guaranteed. As we will show in the 
following discussion, there are several indications that a mean-field treatment, even when 
done self-consistently, may be unable to explain the transition mechanism. 

In table 10 we have listed the cation-anion distances in quartz and berlinite as a function 
of temperature. For both structures the respective tetrahedra contract when going from the 
a- to the @-modification, while the unit cell expands. This contraction of the tetrahedra 
implies that, if we transfer the potentials found at room temperature for the w-modifications 
unchanged to the @-modifications, the force constants derived from the potentials will 
increase. This is at variance with the usual softening of the force constants with rising 
temperature. Due to the rather small cut-off a of the Born-Mayer potentials this increase 
in force constants and the corresponding overall increase of the frequencies is rather strong. 
For certain frequencies it may attain 10%. Such changes in frequency are not observed 
experimentally. On the contrary, apart from the soft-going modes the overall spectrum 
shows hardly any temperature dependence at all (see Gervais and Piitou 1975). The increase 
in force constants must, therefore, be compensated. This compensation may either be due 
to anharmonic terms or to changes in the potential itself, i.e. violations of the adiabatic 
condition. Anharmonic terms based upon the Born-Mayer potential at room temperature 
will hardly give the desired result, as they would also lead to an expansion of the tetrahedra 
with increasing temperature. 
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Table 10. Temperature dependence of the cation-anion distances in quartz and berlinite 
according to Gr im and Domer (1975) and Ng and Calvo (1976). respectively. Por experimental 
errors see the original papers. The numbering of the ions refers to table I ,  The subscript av 
denotes average bond distances for lhe respective lerahedn The bond distances for pquartz 
have been calculated for two different values of the svuctural parameter y according to Young 
(1962) and Wright and Lehmann (1981) at T = 863 K. 

aquartl B - q u m  

T (K) 3W 573 723 800 823 840 y =0.2M y=O.211 

r(Si(lW(6)) (A) 1.608 1.601 1.594 1.582 1.583 1.578 1.594 1.582 
r ( ~ i ( l t 0 ~ )  (A) 1.610 1.607 1.600 1.600 1.606 1.607 1.600 1.600 
r,,(Si-o) (A) 1.609 1.604 1.597 1.591 1.594 1.593 1597 1.591 

a-berlinite p-berlinite 

T (K) 3W 723 773 800 823 853 873 

r(A1(1)-0(7))(.&) 1.73 1.73 1.66 1.68 1.68 1.73 1.69 
r(Al(lW(15)) (A) 1.74 1.74 1.68 1.70 1.61 1.62 1.69 
r d N - 0 )  (A) 1.73 1.74 1.61 1.69 1.65 1.67 1.69 

r(P(4)-0(13)) (A) 1.53 1.51 1.56 1.54 t.59 1.58 1.51 
r(~(4)-0(9)) (A) 1.52 1.51 1.55 1.49 1.48 1.43 1.51 
rdP-0)  (A) 1.52 1.51 1.56 1.52 1.53 1.51 1.51 

r,(P-O + A I - 0 )  (A) 1.63 1.62 1.615 1.605 1.59 1.59 1.60 

As we have seen in the preceding section the equilibrium of the tetrahedra plays a central 
role in all our models. Due to the contraction of the tetrahedra the equilibrium condition 

t We will not go into the discussion of the incommensunble phase observed in the small temperature mnge 
between the low- and high-symmetry modifications (see Beth!e N ol 1987). as lhis problem can hardly be mated 
by ow simplified approach. 
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(14) cannot be satisfied by one single set of potential parameters for different temperatures. 
By requiring the fulfilment of equation (14) for all temperatures we obtain a one-to-one 
correspondence of a chosen model parameter, in our case the cut-off constant a of the 
cation-anion potential, with temperature. The rest of the parameters are kept constant. We 
choose to adjust the short-range potential$ and not the charges as neither the splitting of the 
polar modes nor the high-frequency dielectric constants show any temperature dependence 
(see Gervais and Piriou 1975). A change of the charges with temperature is. therefore, 
practically excluded. The same holds for the polarizability CY which anyway does not enter 
the equilibrium condition (14)i. In figure 3 we show the parameter (2 as a function of 
temperature for the quartz model SM(1). 

There is some arbitrariness the procedure outlined stemming from the fact that the 
temperature dependence of the short silicon-oxygen bond differs from the one for the long 
silicon-oxygen bond. Upon inspection of table 10 we find that only the short bond is 
appropriate for our purpose as it shows a monotonic behaviour with temperature. Instead 
of defining a(T) through equation (14) we may also use the experimentally established 
invariance of certain phonon frequencies for its definition. The situation does not improve 
noticably due to the arbitrariness in choosing the frequencies. It is, however, reassuring, 
that both procedures give nearly identical results, the reason being that they both amount 
to keeping the force constan6 more or less unchanged with temperature. 

. 
Figure 3. Cut-off parmeter a of the cation- 
anion potential of model SM(I) as a function of 
temperature. 

0 

Having established the temperature dependence of the model parameters we can 
calculate the frequency spectra on the basis of the experimentally determined shuctural 
changes. It turns out that most of the modes show only a very weak temperature dependence, 
exactly as required by experiment. Exceptions to this rule are the soft modes at the r and 
M points, the frequencies of which approach zero at the phase transition. In the case of 
the M-point modes the temperature dependence of the frequencies as given by our model 
is confirmed by experiment (Boysen et al 1980). For the r-point mode the experimental 
situation is less clear as one- and two-phonon Raman excitations mix at higher temperatures 
(see the discussion by Scott (1968) and the paper by Shapiro et a1 (1967). Above To a 
small change in the transverse oxygen-oxygen force constants (- 1 N m-’) is necessary 
to reestablish stability, i.e. to regain a positive frequency spectrum for all modes. Within 

$ If the changes necessary are small, it does not matter whether we change the cut-off a or the amplitude V of 
the Born-Mayer potential. 
8 Reminder: when deriving equation (14) we have considered the oxygen ions as clampd, 
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the p-phase the stability range of our models is very smallf. Even small changes in the 
force constants lead to negative frequencies. As through the dependence of the potentials 
upon bond distances such changes can also be generated indirectly by variations of the 
structural parameters, the choice of these parameters strongly influences the predictions of 
the model calculations in the p-phase. Thus the experimental data (Bethke et al 1987) are 
reproduced better by model SM(1) if we use e.g. y = 0.211 as proposed by Young (1962) 
instead of y = 0.207 as proposed by Wright and Lehmann (1981)t. Experimentally the 
limited stability range of the p-phase finds its expression in the fact that the soft mode stays 
at very low frequencies even at temperatures far above To. 

Our results are very similar to the ones obtained by Barron et al (1976) for simple 
short-range models. To the extent that the polarizability of the oxygen ion plays a minor 
role in the mechanism of the phase transition these similarities can be understood on the 
basis of the small variations of the force constants imposed by the temperature dependence 
of the potentials. 

Upon inspection of table 10 we find that it is very difficult to establish a temperature 
dependence a(T) for berlinite by the procedures used for quartz. While in the case of quartz 
the average silicon-oxygen distance smoothly decreases with temperature the aluminium- 
oxygen and phosphorus-oxygen distances in berlinite vary in an irregular way. For the 
PO4 tetrahedra we observe e.g. that the average cation-anion distance r r$es from 1.51 8, 
to 1.56 8, between 723 K and 773 K followed by a sharp drop to 1.52 A at 800 K. For 
comparison, in quartz the average silicon-oxygen distance decreases by just 0.02 8, between 
room temperature and To. Theses variations are even more pronounced if we look at the 
difference between the long and short P-O bondss within the tetrahedra. While these bond 
lengths are nearly equal at 773 K they differ by 0.05 8, at 800 K. Please note that these 
temperatures are not close to TO. Such strong variations of bond lengths (- 4%) over 
such a small temperature interval in the absence of a phase transition must be considered 
enormous. Anbarmonic contributions to the potentials are in ow opinion insufficient to 
explain the phenomenon. Therefore, if these variations are real. they have to be explained 
on the basis of changes in the electronic distribution, i.e. they are genuinely non-adiabatic 
in character. As these variations find their expression in the force constants derived from 
potentials, the compensation of the changes occurring with temperature-as required by the 
invariance of most frequencies and also by equation (14)-implies a strongly fluctuating 
function a(T). We have no physical interpretation for such fluctuations and consider that 
the variations of bond lengths in or-berlinite have not received the necessary attention, either 
experimentally or theoretically. 

As we have difficulties dealing with the irregular contractions of the tetrahedra within 
the or-phase, let us compare the room-temperature data with the ones for the p-phase only. 
This has the additional advantage that in these two cases the experimental errors for the 
bond lengths are smalli. Consulting table 10, we find that for the AI04 tetrahedron the 

t By stability range we denote the volume deEned by the maximum allowed deviations of the model panmelers 
(from their nominal values) which are still compalible with a positive vibrational specr”. In general, the stability 
range of a model is given by a complicated volume in a p-dimensional space. where p is the number of free 
p m e l e r s .  If one considcrs one parameter, only, this volume becomes a one-dimensional interval, 
$ It is interesting lo nole that while far y = 0.211 the huo inquivalent oxygen-axygen distances are nearly 
idenlid they differ strongly for y = 0.207. The same statement holds for the calion-anion distances as can be 
seen by inspection of table IO. 
5 At T = 853 K the long P-O bond mexures 1.58 A, identical to the S i 4  bond in quanz al that temperature. 
while the s h a  P-O bond measures 1.43 b. 
t It has lo be pointed out lhl the experimental m m  for lhe bond lengths in berlinite are generally fat larger lhan 
in quartz. Smaller errors would surely be desirable. 

H Schober and B Domer 
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contraction (- 0.03 A) is somewhat larger than for the PO4 tetrahedron (- 0.01 A). In 
terms of equation (14) both contractions are compatible with a single change of the Born- 
Mayer parameter U from 0.2035 ,& at room temperature to 0.2005 ,& in the @-phase and 
no changes otherwise. In addition, by making the same change to the potential of model 
SM(4), we achieve equilibrium also for the Si04 tetrahedra in quartz. This result simply 
reflects the fact that the contraction of the Si04 tetrahedra is intermediate to the contraction 
of the AI04 and PO4 tetrahedra. 

8. Conclusion 

We have shown that, by making small changes to the shell models developed for cyquartz 
(SiOz), it is possible to give a satisfactory description of the experimentally determined 
frequencies of berlinite (AIPO4). In particular, the potential between silicon and oxygen 
ions in quartz can be used practically unchanged for the short-range interactions between 
aluminium and oxygen and phosphorus and oxygen ions in berlinite. This transferability is a 
strong indication that the cation-oxygen potentials in these materials are mainly determined 
by the oxygen ion. 

Contrary to previous investigations (Bethke et a[ 1992, Scott 1971). all our models 
indicate that berlinite like quartz is a strongly ionic crystal with the positive charge unequally 
distributed among aluminium and phosphorus ions. Based on both the investigation of the 
high-frequency dielectric constant and the splitting of the polar modes we give rather precise 
estimates of the charges and polarizabilities in berlinite, independent of particular lattice- 
dynamical models. The charge of the oxygen ion should be close to 1.8 f O.le with the 
polarizability of the free ion lying between 1.7 and 1.9 A3. The ionic charges of the 
phosphorus and aluminium ions come out to be 4 5  and 2.25e, respectively. Owing to the 
contributions from the short-range potentials the effective charges of the phosphorus and 
aluminium ions differ by smaller amounts than the respective ionic charges. 

In what concerns the short-range interactions, the ones within the PO4 tetrahedra clearly 
dominate in strength the ones within the AI04 tetrahedra. As, in addition, there is an 
appreciable covalent contribution to the bonding within the PO4 tetrahedra, while no signs 
for such bonding can be detected within the A104 tetrahedra, it seems appropriate to consider 
berlinite a crystal of PO4 molecules which are linked via the interactions with the aluminium 
ions. The investigation of the equilibrium conditions adds further evidence to this picture 
of a crystal built up from tetrahedral units. 

Using the equilibrium conditions we have adjusted the model parameters to the structural 
changes occurring with temperature. In the case of ry-quartz, this procedure gives a very 
satisfactory description of the frequency spectrum up to the transition temperature. In 
berlinite the strong irregular variations of the bond lengths severely compromise all efforts 
to establish dependences of model parameters upon temperature. 

Berlinite is not the only isotype of quartz; both crystals belong to a large family of 
binary and temary compounds sharing a common shucture (see Kosten and Arnold 1980, 
Bethke et al 1992). It is our aim to include these crystals in a future study. The main 
obstacle to date is the lack of reliable experimental data. 

Although highly desirable, ab initio calculations for the lattice dynamics of berlinite 
are still unfeasible due to the large number of inequivalent ions in conjunction with a 
low-symmetry shucture. 
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